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Abstract

Calculation of expected fields from pulsed
sources is important in medical tramsdncer design,
source apodization studies, and physical acoustics.
This paper presents a technique for calculating the
diffraction field of a planar pulsed ultrasound
wave with arbitrary spatial and temporal dependence
based on Fourier domain techniques that are analo-—
gous to the techniques used in Fourier optics. The
propagation is characterized by a total impulse
response which is shown to be the Green's function.
In the spatial frequency domain, the transform of
the total impulse response is the propagation
transfer function which behaves as_a time-varying
spatial filter of the form Io[p(c2t2-22)1/2]H(ct—
z). This spatial filter acts to decrease the rela-
tive content of the higher spatial frequencies as
time progresses. The effect of the receiving aper—
ture is easily incorporated in the Fourier domain
as another spatial filter equal to the transform of
the receiver’s spatial sensitivity. Because of the
use of the spatial Fourier transform the technique
is amenable to computer implementation using FFT
routines. Numerical examples are offered, including
field calculations from circvlar and square piston
sources, truncated Gaussian sources, and illustra—
tions of the effect of receiving aperture size.

Introduction

While the propagation of monochromatic waves
is well-solved by the application of the angular
spectrum technique[l] or Fresnel integrals, the
propagation of a pulse of ultrasound with arbitrary
temporal and spatial shape is less well understood.

The approach followed here is based on the
spatial impulse response method introduced by Step-—
anishen [2] and reviewed by Harris [3] where the
field is expressed as a temporal convolution of the
time excitation with the spatial impulse response
of the propagation, It differs from Stepanishen’s
work in that linear systems theory is used to point
out the importance of the point spread function
(and its equivalence to the Green’s function).
Also, the expressions for the spatial impulse res-—
ponse functions are found in the spatial transform
domain, In this domain, propagation of the wave is
seen to be the application of a time—varying spa—
tial filter to the spatial spectrum of the input
wave,
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Theory

The geometry is shown in Fig. 1. Given the z-—
directed velocity excitation over a rigidly baffled
region of of arbitrary shape in the z=0 plane, we
wish to find the acoustic velocity potential
#(x,7,2,t) at an arbitrary point in the positive-z
half-space. We will assume that the z-velocity is
given by

v, (x,5,0,t) = T(t)s(x,y) (1)

In the impulse response technique, it has been
shown [2,3] that the relation between the acoustic
potential and the input z-velocity is

b(x,y,z,t) = T(t) t rix,y,2,t) 2)

where the * symbol indicates convolution. We will
call p{x,y,z,t) the spatial impulse response, de-—
fined as the velocity potential that will result
when the sonrce is excited by a z~velocity of the
form s(x,y)d(t) where 8{(t) is the Dirac impulse
function. Hence the problem of finding O0(x,y,z,t)
is reduced to one of finding the spatial impulse
response of the assumed spatial excitation,
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Fig. 1 Source and receiver geometry
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To find the spatial impulse response we use
linear systems theory [1, Chapt. 2]. The total
impulse response h(x,y,z,t) of a system is repre-
sentod as in Fig. 2a. Here an impulsive input of
the form 8(x,y)8(t) produces the total impulse
response., If the system is linear and space—invar—
jant (as is propagation in a linear homogeneous
medium), then linear systems theory predicts that
the response p(x,y,t) to an arbitrary spatial exci-
tation and an impulse temporal input of the form
s(x,y)8(t)is

p(x,y,z,t) = S(x,y);;h(x.y.t) (3)
as shown in Fig. 2b. Hence to find the spatial

impulse response, we need to find the total impulse
response of the system h(x,y,z,t).
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Fig. 2 a)Propagation impulse response
b) spatial impulse response
c) Propagation transfer function

The total impulse response of the system is
the propagation field resulting from a source at
the input plane of the form 5(x,y)8(t) that solves
the wave equation and meets the boundary condition.
This soluntion is just the Green's function satis—
fying the wave equation and boundary conditions,
Hence, we find that if the Green's function is
known, one knows the total impulse response.

The double spatial convolutions in Eq. 3 are
difficult to implement on a8 computer. To convert
the convolutions to multiplications, we enter the
spatial frequency domain by taking the two-dimen—
sional Fourier spatial transform of the system
input and output. This is shown in Fig. 2¢c (where
the tilde indicates the spatial Fourier transform
of the function). The quantity ﬁ(fx,f ,t) is the
Propagation transfer function and is ghe spatial
transform of the total impulse response (or, equi-
valently, the spatial transform of the Green's
function of the problem).

The Green’'s function for propagation in a

lossless medium for the rigid baffle is known [4]
to be (assuming only outward travelling waves),

g(x,¥,2,t) = ——m————u (4)

where R = (xz+y2+zz)1/2. The spatial impulse res—
ponse of this problem is

plx.y,z,t) = Qs(x,y);;,ﬁft—(ﬂlc)lflr& (5)

We take the spatial transform of Eq. 4 to find
the propagation transfer function hpl for lossless
media as

Byy = (1/mTglp(c?e2-25 1mce-2 (4

pl
where p=(fi+f§)1/2 and H(') is the step function.

Since the results are going to be computer-—
implemented and normalized to maximum values, we
will drop the multiplicative constants. From the
preceeding discussion, we know that the spatial
transform K of the spatial impulse response is
given by

B =3K N

pl

In this form we can identify the & 1 term as a
time-varying multiplicative spatial fif%et for the
propagation in lossless media from a source in a
rigid baffle. High spatial frequencies are rela-—
tively attenuated by this spatial filter. As time
increases, the curve contracts causing a generally
increased attenuation of the high spatial frequen—
cies.

One finds the spatial impulse response for a
given value of z in the following way. We calcu-
late the spatial transform of the given s{x,y)
function, calculate the values of h 1 at the same
spatial frequencies for each value of time, and
inverse spatial transform the product to produce
the impulse response. Equation 2 is then used to
find the desired acoustic velocity potential.

Numerical simulations

An additional advantage to the spatial spec—
trum approach discussed here beyond the physical
interpretation of the propagation as a time-varying
spatial filter is that the solutions are readily
amenable to numerical solutions through the use of
FFT routines and Fourier-Bessel algorithms. To
illustrate numerical solutions, we consider some
cases. The following simulations have been done
using a 64164 array of data, While the method gives
a three-dimensional solution at any observation
distance, one dimension is eliminated in the plots
by representing the solution through a median of
the source. The plots show the amplitude of the
wave plotted against cross—direction and time. For
plotting convenience, the following plots have been
normalized to the maximum amplitude value. The
width is normalized to the characteristic source
size, D, (i,e., either the diameter or the width),
and the time axis is normalized by the value of
D/c. The origin of the time axis begins at z/c, the
instant that the first part of the wave arrives at
the observation plane. All plots are in an observa—
tion plane located 10 ¢m in front of the source
plane.
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1. Impulse excitation

Figure 3 shows the diffraction pattern from a
circular transducer (the diameter is D=2.2 cm)
excited by an impulse as observed on the axis, x=0.
At t=z/c the potential is replica of the excita-
tion, As time progresses, the potential is a com-
bination of waves fron various points on the
source. Late in time two distinct '"tails’ are ob-
served and were explained in terms of edge waves,

Figure 4 is a similar impulse excitation, but
for a square transducer that is 2.2 cm on a side,
The observation point is the same distance from the
source.
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Fig. 3 Velocity potential for circular piston
(D=2.2 cm), impulse excitation, z=10 cm
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Fig. 4 Velocity potential for square
transducer (D=2.2 cm), impulse excitation, z=10 cm

In Fig. 5, the pattern is shown for an axisym-—
metric gaussian shaped wave with an impulse time
excitation. The 1/e point is 1.1/(5) cm from the
center with the observation point kept the same as
in the previous figures. The shape of the gaussian
wave stays much the same because of the low spatial
frequency content of this waveshape. Only large
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Fig. § Velocity potential from a truncated
Gaussian wave (1/e point is 0.491 cm
from center), impulse excitation, z=10 cm

values of time cause substantial spatial filtering
for these low spatisl frequencies.

2. Arbitrary time excitation

For a time excitation different than §(t), the
diffracted wave is a convolution as given by Eq. 2.
Figure 6 is the circular transducer of Fig, 3 (the
diameter is 2.2 cm) excited by a constant amplitude
pulse of 10 microseconds duration for a lossless
medium. The smoothing effect of the time~domain
convolution is evident along the propagation direc-
tion.

3. Finite receiver effects

A receiver which is not a point receiver will
perturb the observed field in the way that it
averages the field. This averaging effect can be
included in this method. The spatial frequency
domain is well suited to include these effects
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Fig. 6 Velocity potential of circular transducer
for non-impulse excitation
(Rectangular pulse excitation, T= 10™° s.)



since the receiver contributes another low-pass
spatial filter.

The averaged field can be written as the comn~
volution of the field at the receiver and the
receiver spatial sensitivity A(x,y). Thus the re-
ceiving transducer is modelled in the spatial fre-
quency domain as a multiplicative spatial filter
given by X(f_,f ). Figure 7 shows the detected
field for a finite—-sized circular receiver. The
source is the circular transducer used in Fig. 3.
The spatial convolution effect of the receiver is
seen in the slight slope of the edge waves.
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Fig. 7 Impulse response for finite size
circnlar receiver(Receiver radius=1/2ncm).
Circular source (D = 2.2 cm).

Summary

This paper presents a computationally efficient
method of computing the transient acoustic waves in
lossless and lossy media. The fields are expressed
in terms of the spatial impulse response which is
found by inverse transforming the product of the
transform of the spatial excitation and the propa-—
gation transfer function. The propagation transfer
function has been shown to be the transform of the
Green's function which is the total impulse res—
ponse of the propagation problem. No assumptions of
the paraxial nature or restrictions on the propaga-
tion distance have been made. Additionally the
solutions in the space domain use the computation—
ally efficient Fourier transform. Once the spatial
impulse respomse is known, Eq. 2 can be used to
find the field for an arbitrary time excitation.
The effects of a finite aperture receiver are also
easily incorporated in the spatial frequency do-
main, Several numerical simulations have been given
to illustrate the results of the technique.
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